图卷积网络原来是这么回事(三)——图滤波器与图卷积的设计

1. 图滤波器

1.0 basic filter from Spectral Decompositon of Graph Laplacian

$L=U\Lambda U^T$ , $U=(u_1, u_2, \cdots, u_n)$

Give a signal on graph: $x=\sum_{i}^n \alpha_iu_i$, we can get a basic filter $u_iu_i^T$ from each engienvector:

$$ u_iu_i^Tx=\sum_{j=1}^nu_iu_i^Tu_j\alpha_j = \alpha_i u_i $$

1.1 定义:

$$ H=Ug(\Lambda)U^T $$

其中,$g(\Lambda)=\begin{pmatrix}g(\lambda_1) & \cdots & 0\\0& g(\lambda_2) & \cdots \\\vdots& \ddots & \vdots \\ 0 & \cdots & g(\lambda_n)\end{pmatrix}$ 图滤波器和图拉普拉斯的区别在于相应矩阵:

1.2 滤波器和拉普拉斯都可以对信号进行变换:

$$ L=U\Lambda U^T $$

回顾拉普拉斯变换的物理意义:

$$ Lx=\begin{pmatrix}\sum_{j\in N(v_1)}(x_1-x_j) \\ \sum_{j\in N(v_2)}(x_2-x_j) \\\vdots \\\sum_{j\in N(v_n)}(x_n-x_j)\end{pmatrix} $$