A brief Review:
优化D使得它能分辨出真实样本x和生成的样本G(z);
优化G使得它生成的样本G(z)被判别器判定为真实样本;
D(*)=1表示为真实样本;
$$ \min_G\max_{D}\mathbb{E}{x\sim p(x)}log\{D(x)\}+\mathbb{E}{z\sim q(z)}\{log(1-D(G(z)))\} $$
实际上在优化生成器时,直接min -E{log(D(G(z)))}, 防止梯度消失;
优点:
缺点:
将真实样本映射为给定的先验分布,从变分分布中采样出中间变量Z,再由Z生成样本;
$$ Loss=MSELoss(X, \hat{X})+KL(q_{\phi}(z|x)||p(z|x)), p(z|x)\sim N(0, 1) $$