MAML on Graph;
STRATEGIES FOR PRE-TRAINING GRAPH NEURAL NETWORKS
First Node-level then Graph-level pre-train;
KEG’s tutorial:Self-supervised Learning and Pre-training on Graphs (GNNs)
Tutorial on Graph SSL and Pre-train
Mutual Info 的角度来提高图对比学习方法中向下游任务的泛化能力
GPT-GNN: Pre-train on Large-Scale-Graph to easy the downstream node-level tasks【2020】
Infoadv的参考之一,利用InfoMax原则做为对比的指导
生成式的图自监督策略
以数据为中心,分析哪些预训练数据对下游任务是有益的
PRODIGY: Enabling In-context Learning Over Graphs
对比LLM的k-shot prompt形式,做“适图化”,实现图上的pre-train+prompt
GraphPrompt: Unifying Pre-Training and Downstream Tasks for Graph Neural Networks
unify the downstream and pre-training task as subgraph-sim-calculation and use a learnable prompt in readout for downstream tasks;
ParetoGNN: Multi-Task SSL on GNN
All in one: Multi-task Prompting for GNNs
KDD2023 Best Paper
Distribution Free Domain Generalization
2023 ICML; kernel based; optim the metric’s weights to prevent one domain to lead the pre-train process;
Blanchard2011、DFDG & MDA 泛化能力分析
通过核函数把原空间的样本映射到一个RKHS,并找一个降维变换使得domain间的discrepency小,而类别之间的discrepency大,并利用RKHS的再生性质(kernel trick)来从代数上解决优化问题。
Domain Generalization with Adversarial Feature Learning
2018ECCV;source domian共享AAE的基础上添加了MMD正则项,使得domain之间的差异减小;AAE部分的则通过引入给定的先验分布约束了所有隐空间的分布 ,使得编码器可以泛化到unseen的target domain。【没有考虑P(Y|X)domain可变的情况】